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Aberrant expression of O-glycans is a hallmark of epithelial
cancers. Mucin-type O-glycosylation is initiated by a large fam-
ily of UDP-GalNAc:polypeptide N-acetylgalactosaminyltrans-
ferases (GalNAc-Ts) that target different proteins and are dif-
ferentially expressed in cells and organs. Here, we investigated
the expression patterns of all of the GalNAc-Ts in colon cancer
by analyzing transcriptomic data. We found that GalNAc-T6
was highly up-regulated in colon adenocarcinomas but absent in
normal-appearing adjacent colon tissue. These results were ver-
ified by immunohistochemistry, suggesting that GalNAc-T6
plays a role in colon carcinogenesis. To investigate the function
of GalNAc-T6 in colon cancer, we used precise gene targeting to
produce isogenic colon cancer cell lines with a knockout/rescue
system for GALNT6. GalNAc-T6 expression was associated with
a cancer-like, dysplastic growth pattern, whereas GALNT6
knockout cells showed a more normal differentiation pattern,
reduced proliferation, normalized cell– cell adhesion, and for-
mation of crypts in tissue cultures. O-Glycoproteomic analysis
of the engineered cell lines identified a small set of GalNAc-T6 –
specific targets, suggesting that this isoform has unique cellular
functions. In support of this notion, the genetically and func-
tionally closely related GalNAc-T3 homolog did not show com-
pensatory functionality for effects observed for GalNAc-T6.
Taken together, these data strongly suggest that aberrant Gal-
NAc-T6 expression and site-specific glycosylation is involved in
oncogenic transformation.

Malignant transformation is closely associated with changes
in the glycosylation of proteins and lipids (1, 2). One well-doc-
umented example, which is observed in the majority of epithe-
lial cancers and premalignant lesions, is cancer-associated

changesinGalNAcO-glycosylation(1,3–5).GalNAc-typeO-gly-
cosylation is an abundant and diverse form of post-translational
modification (6). It is initiated by a family of up to 20 polypep-
tides, termed GalNAc-transferases (GalNAc-Ts),2 that cata-
lyzes the addition of GalNAc residues to the hydroxyl groups of
selected serine and threonine residues in proteins (6 –19). In
healthy cells, the initiating GalNAc residue (GalNAc�1, also
known as the Tn antigen) is elongated, branched, and capped
with different carbohydrate structures in sequential processing
steps. In contrast, cancer cells are often characterized by the
expression of immature and truncated O-glycan structures,
such as Tn and sialylated Tn (STn) (20). The expression of these
short and truncated O-glycans strongly correlates with poor
prognosis (21–24). Although the association between the
expression of truncated O-glycans and cancer prognosis per se
is well-established, the importance of GalNAc-T-mediated
site-specific glycosylation in cancer is unclear, due mainly to
technical limitations. Until recently, it was not possible to con-
duct a global analysis of GalNAc-T function to identify which
proteins are glycosylated with this moiety and the glycosylation
sites within the proteins. We recently developed a differential
global glycoproteomic strategy, which, in combination with
genetic engineering, enables us to investigate the function of
specific GalNAc-Ts in cell line models and to begin to investi-
gate the site-specific functions of GalNAc glycosylation in
cancer (25–27).

GalNAc-Ts control the initiation of O-glycan biosynthesis
and are differentially expressed in cells and tissues. They
have distinct, partly overlapping acceptor substrate specific-
ities (6, 28, 29). GalNAc-T glycosylation has been implicated
in numerous important biological functions, including pro-
protein processing, ecto-domain shedding, cell signaling,
and cell adhesion (30 –33). Furthermore, GalNAc-Ts are
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reported to influence several key processes that are im-
portant for tumor formation, including growth (34 –37),
immune evasion (38, 39), and invasion and metastasis (36,
37, 40 – 44). Notably, the exact relationship of site-specific
O-glycosylation and tumor formation is unknown, and we
do not yet understand how up-regulation of selective
GalNAc-Ts affects carcinogenesis.

A homologous pair of glycosyltransferases, GalNAc-T3 and
GalNAc-T6, is the most prominent example of cancer-associ-
ated GalNAc-Ts (6, 10, 28, 29, 45, 46). GalNAc-T3 and Gal-
NAc-T6 display high similarity at both DNA and amino acid
levels, having similar genomic organization with nine identi-
cally positioned intron/exon boundaries in the coding regions
(10). GalNAc-T3 is expressed in almost all normal epithelia,
and dysregulated expression of GalNAc-T3 has been observed
in various carcinomas, including oral (41, 47), colon (44), pan-
creatic (48 –50), breast (51), gallbladder (52), gastric (53, 54),
prostate (55), renal (56), lung (57), esophageal (58), thyroid (59),
and extrahepatic bile duct (42) carcinomas. GalNAc-T6 is also
reported to be aberrantly expressed in various types of cancer,
including breast (60 –64), gastric (40), renal (56), and pancreatic
(49) carcinomas. However, in contrast to GalNAc-T3, Gal-
NAc-T6 is absent in most healthy tissues. Furthermore, the
correlation of GalNAc-T6 expression with early stage cancer
tissue (65) implies that GalNAc-T6 plays a role in early carci-
nogenesis. This is supported by reports suggesting that Gal-
NAc-T6 is involved in the induction of the epithelial-to-mes-
enchymal transition (EMT) and cadherin-switching, which are
followed by morphological changes and increased metastatic
potential (66 –68).

In this study, we examined the expression patterns of all Gal-
NAc-Ts in colon cancer using transcriptomic data analysis, and
we observed selective up-regulation of GalNAc-T6 but not Gal-
NAc-T3. To shed light on the function of GalNAc-T6 in colon
cancer development, we developed a cell model system in
which specific ablation of the gene encoding GalNAc-T6
(GALNT6) was followed by detailed polyomic analysis. Precise
genome-targeted knockout of GALNT6, GALNT3, or a combi-
nation of the two in the LS174T colon cancer cell line demon-
strated that GalNAc-T6 expression was essential for the acqui-
sition of oncogenic features such as hyperproliferation, loss of
normal colonic epithelial architecture, and the disruption of
cell–cell adhesion. Thus, LS174T GALNT6 knockout cells
showed terminal differentiation traits and formed crypt-like
structures that resembled the tissue architecture of a healthy
colon, features that were reverted upon reintroduction of exog-
enous GalNAc-T6. Differential transcriptomic analysis con-
firmed that the expression profile of the GalNAc-T6-express-
ing LS174T cells resembled that of colon cancer cells, whereas
LS174T GALNT6 knockout cells had an expression profile that
was more similar to that of normal colon tissue. Furthermore,
differential O-glycoproteomic analysis identified unique Gal-
NAc-T6 targets, including several important cellular adhesion
proteins. These results support the notion that aberrantly
expressed GalNAc-T6 plays an important role in colorectal
carcinogenesis.

Results

Selective up-regulation of GalNAc-T6 in colon cancer tissue

We first used The Cancer Genome Atlas (TCGA) on colon
adenocarcinomas to identify potential cancer-associated
changes in the expression of GalNAc-Ts. Expression profiles
for all 20 GalNAc-T isoforms were analyzed in 288 colon ade-
nocarcinomas and in 41 healthy colon tissue samples using
RNAseq transcriptome data (https://genome-cancer.ucsc.edu/
proj/site/hgHeatmap/)3 (Fig. 1a and Fig. S1). Of the 20 Gal-
NAc-T isoforms, GalNAc-T6 was the only GalNAc-T that was
expressed de novo in colon cancer, i.e. was absent from healthy
colon tissue. In contrast, the majority of GalNAc-Ts was either
unregulated or down-regulated in colon cancer (Fig. 1a and Fig.
S1). To confirm the cancer-specific up-regulation of Gal-
NAc-T6 at the protein level, we evaluated the expression of
GalNAc-T6 in 39 cases of colorectal carcinomas and in healthy
colorectal mucosa by immunostaining. The expression pattern
of GalNAc-T6 was compared with the expression of its close
homolog GalNAc-T3 (Fig. 1b; Table 1). GalNAc-T6 expression
was detected in 34 of 39 carcinomas with antibody labeling
restricted to the perinuclear area, suggesting its localization to
the Golgi apparatus. GalNAc-T6 expression was not detected
in normal colorectal mucosa in four of four cases. High levels of
GalNAc-T3 were detected in all 39 colorectal carcinomas, and
GalNAc-T3 was almost homogeneously expressed in all layers
of the normal-appearing crypts as well as in the tumor tissues.
Thus, in contrast to GalNAc-T3, GalNAc-T6 was overex-
pressed in tumor tissue but not in normal colon tissue. This
establishes that GalNAc-T6 is up-regulated at both RNA and
protein levels in a cancer-specific manner and suggests that
aberrantly expressed GalNAc-T6 has a unique function in
colon cancer progression.

GalNAc-T6 disrupts the formation of actin-lined lumens and is
associated with the expression of cancer-associated genes in
vitro

We next used the well-differentiated human LS174T colon
adenocarcinoma cell line as a cell model to evaluate colon cell
growth in the presence and absence of GalNAc-T6. LS174T
cells exhibit unrestricted growth and grow as separate clusters
of cells, supposedly due to inhibited p21WAF1 expression (69).
GALNT6 and GALNT3 were knocked out in LS174T cells, indi-
vidually or combined, using zinc finger nuclease (ZFN)-based
genome editing to produce �T6 and �T3 cells. Successful out-
of-frame mutagenesis was confirmed in individual single-cell
clones (Table S1). RNAseq verified that non-sense–mediated
RNA decay had removed the targeted transcripts (Fig. 2a),
which was also shown by immunofluorescence staining (Fig.
2b). Knockout of GALNT6 was accompanied by an increase in
GALNT3 transcripts, and similarly, the knockout of GALNT3
was associated with an increase in GALNT6 transcripts, which
suggests that these two enzymes can compensate for each other
(Fig. 2a). There were no notable changes in the expression of
other GalNAc-Ts after select knockout of either GALNT3 or

3 Please note that the JBC is not responsible for the long-term archiving and
maintenance of this site or any other third party hosted site.
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GALNT6. Knockout of both GalNAc-T3 and -T6, however,
resulted in an increase in the expression of GALNT1.

In accordance with previous reports (69), wildtype (WT)
LS174T cells formed multilayered colonies, thereby replicating
colon cancer growth. Phalloidin staining, to detect F-actin cyto-
skeletal protein, showed that WT LS174T colon cancer cells,

expressing high levels of GalNAc-T6, grew as clusters of cells
with dense tubular structures and multiple small, actin-lined
lumens, which could resemble the disordered crypts seen in
colon cancer tissue (Fig. 3, a, b, and d). Intriguingly, knock-
out of GALNT6 resulted in cells that grew as colonies with
one large actin-lined lumen surrounded by a wall of cells of

Figure 1. Expression pattern of GalNAc-T6 and GalNAc-T3 in colon tissue. a, TCGA IlluminaHiSeq RNAseq data obtained from https://genome-cancer.
ucsc.edu/proj/site/hgHeatmap3 show the expression of GalNAc-Ts in 288 colon adenocarcinomas and 44 healthy colon tissue samples. Red �0, white � 0, blue
�0, gray � no data. The data are normalized by subtracting the mean of the RNAseq values from each sample value for each of the 20 GalNAc-T and shown in
red or blue color. GalNAc-T6 is specifically up-regulated in colon adenocarcinoma, whereas GalNAc-T3 expression is unchanged. b, immunofluorescence
staining of GalNAc-T6 (mAb 2F3) and GalNAc-T3 (mAb 2D10) (green) in colorectal adenocarcinoma and healthy colon mucosa (blue, DAPI). GalNAc-T6 is
strongly expressed in tumor tissue and absent in normal tissue, whereas GalNAc-T3 is expressed in both types of tissue. Hematoxylin and eosin (H&E) staining
shows the morphology of tumor tissue compared with normal tissue in the present sample. Scale bar, 50 �m.

Table 1
GalNAc-T6 and GalNAc-T3 expression in colon adenocarcinoma
Tissues were evaluated as positive when more than 25% of the cells were labeled. Labeling intensities were scored from 0 (negative) to 3 (high intensity staining).

GalNAc-T6 GalNAc-T3

Labeling intensities

Total positive (>1)

Labeling intensities

Total positive (>1)0 1 2 3 0 1 2 3

Colorectal carcinoma
Well-differentiated (n � 22) 1 2 3 16 95% (21/22) 0 0 0 22 100% (22/22)
Moderately differentiated (n � 10) 2 0 2 6 80% (8/10) 0 0 0 9 100% (9/9)
Poorly differentiated (n � 1) 1 0 0 0 0% (0/1) 0 0 0 1 100% (1/1)
No information (n � 6) 1 1 3 1 83% (5/6) 0 0 0 6 100% (6/6)

Total 5 3 8 23 87% (34/39) 0 0 0 39 100% (39/39)
Healthy 4 0 0 0 0% (0/4) 0 0 0 2 100% (2/2)
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varying thickness. Staining of healthy colon tissue revealed
similarity of these luminal structures with healthy colonic
crypts (Fig. 3d).

To confirm that the phenotypic change observed in
LS174T�T6 cells was the result of GALNT6 knockout rather
than a clonal effect, we re-introduced functional, constitutively
expressed GALNT6 into �T6 cells to create �T6�T6 cells. This
was accomplished using a recently published site-specific ZFN-
mediated knockin strategy (Fig. 3c and Table S1) (70, 71).
GALNT6 re-introduction rescued the phenotype, and the
�T6�T6 cells formed disorganized clusters of cells with mul-
tiple small actin-lined lumens (Fig. 3a). Interestingly, no major
phenotypic changes were observed after knocking out the close
homolog GALNT3 in a WT or �T6 cell background (�T3 and
�T3�T6) (Fig. 3a). When we observed more than 300 colonies
of �T6 and �T3�T6 cells, we found that 69 and 64% formed
crypt-like structures, respectively, compared with 1.5% of WT
cells, 1% of �T3 cells, and 13% of �T6�T6 cells (Fig. 3e). Taken
together, these results indicate that the specific up-regulation
of GalNAc-T6 expression during malignant transformation
disrupts colon crypt formation.

GalNAc-T6 influences the proliferation and differentiation of
colon cancer cells

To investigate the functional role of GalNAc-T6 in colon
carcinogenesis, we performed RNAseq analysis of LS174T cells
that did or did not express GalNAc-T6 and GalNAc-T3 (Table
S2). We defined 122 genes that were significantly down-regu-
lated in LS174T�T6 cells (RPKM(WT) �10, log2(�T6/WT) �
�2) (Table S3). String (http://string-db.org)3 and functional
enrichment analysis (Gene Ontology terms) revealed that half
of these genes (62/122) are involved in the cell cycle (Fig. 4a).
Investigation of the proliferative potential of LS174T cells
showed lower cell population doubling times for cells lacking
GalNAc-T6 compared with wildtype cells (Fig. 4b). When Gal-
NAc-T6 expression was restored in LS174T cells, the doubling
curves phenocopied those of the WT cells. No changes in pro-
liferation were observed in �T3 cells. These findings suggest
that GalNAc-T6 promotes cellular proliferation in colon
cancer.

In normal colon crypts, cells arise from stem cells located in
the crypt base. As the cells differentiate, they lose their ability to
proliferate (Fig. 4c). In cancer, however, a lack of differentiation

Figure 2. Expression of various GalNAc-T isoforms in LS174T WT and GALNT6 and/or GALNT3 knockout cells at the RNA level in the transcriptomic
analysis (a) and at the protein level as analyzed by immunofluorescence staining (b). Green, GalNAc-T; blue, DAPI. Scale bar, 10 �m in all images.
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allows sustained proliferation. The formation of organized
crypts in LS174T�T6 cells suggests a shift toward a more dif-
ferentiated state and might explain the decrease in proliferative
potential. To test this hypothesis, we stained LS174T cells for
the leucine-rich repeat-containing G-protein– coupled recep-
tor 5 (LGR5). LGR5 is considered one of the most selective stem
cell markers in the intestine (72), and its expression is restricted
to the crypt base of normal colon mucosa. LS174T�T6 cells
showed positive LGR5 staining only at the crypt base of the
colonies (Fig. 4d), mimicking the LGR5 expression pattern in
healthy colon tissue. In contrast, LS174T cells that expressed
GalNAc-T6 had a high number of LGR5-positive cells in the
upper layers of the colonies, with increasing staining intensity
at the luminal surface, similar to the expression pattern of
LGR5 in human colon cancer (73). This may indicate that Gal-
NAc-T6 expression induces a cancer-like LGR5 expression pat-
tern in these colonies (Fig. 4d). The number of LGR5-positive
cells was higher in �T6�T6 cultures than in �T6 cultures, with
increased staining toward the top of the colonies, although
reintroduction of GalNAc-T6 expression did not completely
revert the �T6 phenotype.

Next, we assessed the expression of markers that define var-
ious differentiation stages in the colon in the transcriptome of
LS174T cells, and we found a correlation between the loss of
GalNAc-T6 and increased transcription of differentiation
marker genes. Conversely, the transcriptome of LS174T cells

that expressed GalNAc-T6 had an expression signature that
was characteristic of non-differentiated colon cells (Fig. 4e,
upper panel, and Table S4). We used the colon adenocarcinoma
TCGA transcriptome database to assess whether this GalNAc-
T6-dependent gene expression pattern resembled the expres-
sion pattern in human colon cancer tissue (Fig. 4e, lower panel).
Remarkably, the general low expression of differentiation
markers in LS174T WT cancer cells mimics the low expression
of these markers in human colon adenocarcinomas (Fig. 4e).
Conversely, the expression profile of LS174T cells lacking Gal-
NAc-T6 resembled the expression profile of healthy colon tis-
sue in that both had decreased expression of stem cell markers
and increased expression of genes associated with the differen-
tiated state. Knockout of GALNT3 did not affect the expression
of differentiation markers.

The ability to form crypts, keep a low proliferation rate, and
retain a highly differentiated state are all properties of healthy
colon cells that are lost during carcinogenesis. In LS174T can-
cer cells, elimination of GalNAc-T6 slows down proliferation
and allows the cells to differentiate and form crypt-like struc-
tures, which suggests a shift toward a less dysplastic phenotype.
To investigate whether the change in expression detected upon
knockout of GALNT6 resembles the shift in gene expression
from healthy colon tissue to colon adenocarcinoma, we used
the dataset from the TCGA transcriptome database. The vast
majority of the 122 genes down-regulated in LS174T�T6 cells

Figure 3. GALNT6 knockout induces crypt-like morphology in the LS174T colon cancer cell line. a, actin-lined lumens were detected by phalloidin
staining (red) that was visualized by confocal microscopy. XY micrographs from three z-sections are presented. Scale bar, 20 �m. b, XZ micrographs of WT and
�T6 colonies generated by confocal z-stacks. c, expression of GalNAc-T6 after re-introduction of GALNT6 (�T6�T6) in GALNT6 knockout cells (�T6). Green,
GalNAc-T6; blue, DAPI. Scale bar, 10 �m. d, colon carcinoma and healthy tissue section stained with DAPI (blue). e, more than 300 colonies of each cell type were
investigated, and the percentage of crypt-forming colonies was determined in a blinded manner. *, t test, p value � 0.008853.
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was also expressed at lower levels in healthy colon tissue when
compared with colon adenocarcinomas (Fig. 4f). The trend was
less clear for the 43 genes that were significantly up-regulated in
�T6 cells (RPKM(�T6) �10, log2(�T6/WT) �2) (Table S3). In
this case, we found only a portion of the genes to be up-regu-
lated in healthy colon tissue compared with colon adenocarci-
nomas (data not shown). In contrast, the expression of only a
few genes was changed in �T3 cells (Tables S2 and S3 and data
not shown).

GalNAc-T6 controls cell– cell adhesion but does not induce the
EMT

GalNAc-T6 expression has previously been associated with
induction of the EMT (68). We therefore investigated whether
the LS174T transcriptome expressed markers that are associ-
ated with the epithelial phenotype (E-cadherin/CDH1) or mes-
enchymal markers (N-cadherin/CDH2; vimentin/VIM; fibronec-
tin/FN1) (Fig. 5a). We did not detect any notable change in any

Figure 4. GalNAc-T6 expression stimulates proliferation and suppresses differentiation in LS174T colon cancer cells. a, Gene Ontology term analysis of
genes that are down-regulated in GALNT6 knockout cells (string-db.org).3 The genes involved in cell cycle are depicted in red. b, cell population doubling curves
for LS174T cells with the indicated genotypes. *, t test, p value � 0.0149. c, morphology and cell types in a normal colon crypt. Stem cells at the crypt base
differentiate into progenitor cells, which further differentiate into enterocytes, goblet cells, and enteroendocrine cells. Stem cell markers and proliferating cells
are found at the bottom part of the crypt, and differentiated cells are found toward the mucosal surface of the colon. d, LGR5 expression (green) in WT and �T6
colonies shown in XY and XZ micrographs generated by confocal z-stacks. Colony borders were visualized by actin staining and are depicted as white dashed
lines. Scale bar, 20 �m. e, upper panel, regulation of stem cell markers and differentiation markers in the transcriptomes of �T6 and �T3 cells compared with WT
cells. Data are shown by the relative level of RPKM on a log2 scale. e, lower panel, expression of the same stem cell and differentiation markers in adenocarci-
nomas and in healthy colon tissue using the TCGA IlluminaHiSeq RNAseq data obtained from https://genome-cancer.ucsc.edu/proj/site/hgHeatmap3 showing
gene expression in 292 colon adenocarcinomas and 37 healthy colon tissue samples. Red, �0; white � 0; blue, �0; gray � no data. f, TCGA IlluminaHiSeq
RNAseq data obtained from https://genome-cancer.ucsc.edu/proj/site/hgHeatmap3 showing gene expression in 292 colon adenocarcinomas and 37 healthy
colon tissue samples of genes that were down-regulated at least 4-fold (log2 � �2) in the transcriptome of �T6 cells compared with WT cells. Only genes with
RPKM values greater than 10 are included. Red, �0; white � 0; blue, �0; gray � no data.

Figure 5. GALNT6 knockout increases cell– cell adhesion. a, mRNA expression of markers of epithelial-to-mesenchymal transition in LS174T WT, �T6, and
�T6�T6 cells. b, mRNA expression of proteins involved in adhesion. c, fluorescence staining of E-cadherin and CD44 proteins in colonies of LS174T WT, �T6, and
�T6�T6 cells (green, DAPI in blue). Scale bar, 20 �m. d and e, cells grown to confluency were dissociated from the plastic surface as complete cell layers by
dispase treatment. After pipetting the cells up and down three times, cell fragments were counted as a measure of cell– cell adhesion. Fragments with at least
20 cells were counted. e, micrographs of the cell layers/fragments. Scale bars, 500 �m. *, t test, p value � 0.0436.
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of these markers or in inducers of EMT (SNAI1/Snail; SNAI2/
Slug; TWIST1/Twist; TGFB1/transforming growth factor �),
which implies that GalNAc-T6 expression alone does not
induce EMT. Knockdown of GalNAc-T6 was recently shown to
induce a switch from P-cadherin to E-cadherin expression in
pancreatic cancer cells (67). However, our colon transcriptome
data indicated rather an opposite shift from E-cadherin to
P-cadherin expression (Fig. 5b). In addition to P-cadherin, sev-
eral other proteins involved in adhesion, predominantly
cell– cell adhesion, were up-regulated upon GALNT knock-
out, including cadherin-17, CD44, and versican (Fig. 5, b and c).
This indicates that expression of GalNAc-T6 disrupts the
intercellular adhesive potential. To test this hypothesis, we
performed a cellular dissociation assay on confluent sheets of
LS147T cells that did or did not express GalNAc-T6. Cell– cell
adhesion was significantly stronger in LS174T�T6 cells than
in LS174T WT cells, where the confluent cell sheet was easily
disrupted (Fig. 5, d and e). Reintroduction of GalNAc-T6
expression in LS174T�T6 cells rescued the WT phenotype,
indicating that GalNAc-T6 decreases intercellular adhesion in
LS174T cell cultures (Fig. 5, d and e). However, whether the
change in expression of adhesion molecules is responsible for
the changes in cell– cell adhesion that we observed in
LS174T�T6 cells remains to be determined.

Differential O-glycoproteomic analysis identifies substrates
glycosylated by GalNAc-T6

To further investigate the role of GalNAc-T6 in colon cancer
development, we analyzed GalNAc-T6 target sites using the
SimpleCell strategy. The SimpleCell strategy (Fig. 6a) uses
homogeneous truncation of O-glycosylation to produce short
glycan structures (Tn and STn) that allow enrichment of glyco-
peptides and determination of glycosites by nanoflow liquid
chromatography-tandem mass spectrometry with electron
transfer dissociation (ETD). This strategy can be combined
with targeted knockout and knockin of individual GALNTs for
broad ex vivo discovery of GalNAc-T isoform-specific func-
tions (27, 29). SimpleCell versions of LS174T (LS174TSC) cells
that do or do not express GalNAc-T6 and/or GalNAc-T3 were
developed by ZFN-mediated knockout of COSMC (Fig. 6b and
Table S1) (29, 32). Stable isotype dimethyl labeling (74) of total
tryptic peptide digests from isogenic cell pairs with either light
(L) or medium (M) reagent allowed quantitative profiling of
GalNAc O-glycopeptides using sensitive O-glycoproteomic
mass spectrometry (Fig. 6a) (75). The strategy and the light/
medium pairs are shown in Fig. 6c. Elimination of specific Gal-
NAc-T isoforms in LS174TSC cells is thus expected to reveal
glycosylation sites specific to those isoforms. Specifically, we
looked for down-regulation or loss of M-labeled glycopeptides
compared with L-labeled glycopeptides by analysis of the com-
plete data sets from all of the differential O-glycoproteomes
(Table S5). Based on earlier observations (27, 29), we consid-
ered 10-fold down-regulated M-labeled glycopeptides (log10(M/
L) � �1) to be GalNAc-T6 –specific and/or GalNAc-T3-spe-
cific sites. When comparing GalNAc-T3 and GalNAc-T6
directly (Fig. 6c), specific GalNAc-T3 targets were the result of
a loss of L-labeled LS174TSC�T3 glycopeptides, producing
log10(M/L) values that were equal to or higher than 1. The

analysis was performed on total cell lysates (TCL) as well as on
secretomes (SEC) with two or three replicates for each set. 43
potential GalNAc-T6 –specific glycosylation sites were identi-
fied in LS174TSC�T6 cells, whereas 67 sites were identified
from the LS174TSC�T3 versus LS174TSC�T6 comparison; 12
sites were found using both approaches leaving a total of 98
potential GalNAc-T6 –specific sites. In addition, 102 potential
GalNAc-T3 targets were identified (35 sites from LS174TSC

versus LS174TSC�T3 comparison and 72 sites from
LS174TSC�T3 versus LS174TSC�T6 comparison, and five sites
were found using both approaches). Finally, 130 potential Gal-
NAc-T3- and/or GalNAc-T6 –specific targets were identified
by the comparison of LS174TSC and LS174TSC�T3�T6 cells
(Fig. 6d and Table S5). To refine the results, we only considered
targets found in at least two datasets. Furthermore, we rejected
all glycosites that were targets of both GalNAc-T6 and Gal-
NAc-T3. Finally, we performed focused proteome analysis
(data not shown) to ensure that the observed loss of glycosite
was not due to down-regulation of acceptor substrates. After
this rigorous selection, six glycopeptides in six different pro-
teins were found to be selectively glycosylated by GalNAc-T6
(Fig. 6d and Table 2). Another 82 glycopeptides in 68 proteins
were glycosylated by GalNAc-T3 and/or GalNAc-T6 (Fig. 6e
and Table S6). The six GalNAc-T6 –specific targets that we
identified were as follows: melanoma inhibitory activity protein
3 (Thr-666); ephrin type-B receptor 6 (Thr-564); coiled-coil
domain-containing protein 14 (Thr-807/Ser-819)4; HLA class
II histocompatibility antigen � chain (Thr-203); nucleobin-
din-2 (Thr-163); and SLIT and NTRK-like protein 1 (Thr-322/
Thr-327/Ser-329/Ser-330). In contrast, we did not find any
reproducible, selective GalNAc-T3 targets that were not shared
with GalNAc-T6 (Fig. 6, d and e). These results suggest that the
majority of the glycosites in LS174T cells can be targeted by the
two homologs, GalNAc-T3 and GalNAc-T6. In addition, Gal-
NAc-T6 can glycosylate a small number of unique receptors or
secreted matrix proteins that are involved in cell– cell adhesion
(Fig. 6e).

Discussion

Aberrant expression of O-glycans is a hallmark of epithelial
cancers (76 –80) and is associated with poor prognosis and sur-
vival (20). Although many studies have investigated how
changes in O-glycan elongation and branching affect cellular
behavior in cancer, only a few studies have investigated the
impact of changes in the initiating step of O-glycan biosynthe-
sis, which is governed by GalNAc-Ts. Here, we demonstrated
that the de novo expression of GalNAc-T6 suppresses human
colon cancer cell differentiation. This suggests that the glyco-
sylation pattern governed by GalNAc-T6 has a unique role in
colon carcinogenesis. Furthermore, this implies that the Gal-
NAc-T6 near-identical homolog, GalNAc-T3, does not func-
tionally compensate for GalNAc-T6 and suggests that the high
similarity sub-family members, which most GalNAc-Ts belong
to, can serve unique functions.

4 CCDC14 was excluded from Table 2 due to its presumed cytoplasmic local-
ization, which could question the nature of the HexNAc residues.
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Up-regulated GalNAc-T6 levels were previously reported in
various types of cancer, including breast (60 –64), gastric (40),
renal (56), and pancreatic (49) carcinomas. Here, we report a de
novo expression of GalNAc-T6 in colon adenocarcinoma.
Approximately 95% of colon cancers are of the adenocarcinoma

type. The remaining 5% includes sarcomas and squamous cell
and carcinoid tumors. However, the regulation of GalNAc-T6
in these less common carcinomas remains to be evaluated.

To assess the importance of GalNAc-T6 expression in differ-
entiation of colonic epithelia, we used the LS174T tumor cell
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line, which is derived from a human adenocarcinoma (81).
LS174T cells are well-differentiated and exhibit unrestricted
growth as separate clusters of cells; this is thought to be due to
inhibited p21WAF1 expression (69). We demonstrated that the
knockout of GALNT6 in LS174T cells reverted their cancer-like
growth characteristics and promoted defined tissue organiza-
tion with the formation of crypt-like structures. In contrast,
knockout of the close homolog GALNT3, which is expressed in
both healthy colon tissue and in colon cancer, did not induce
any changes in growth.

The increased expression of GalNAc-T6 has previously been
suggested to promote morphological changes in several human
cancers (66, 82). In breast cancer, overexpression of Gal-
NAc-T6 was reported to decrease cellular adhesion and disrupt
mammary acinar morphogenesis (66, 67, 82). Furthermore, it
has been shown that GalNAc-T6 expression in pancreatic can-
cer causes a switch from E-cadherin expression to P-cadherin
expression affecting cellular adhesion to the underlying matrix
(67). The cancer-associated expression of GalNAc-T6 has also
been proposed to induce EMT (66, 68, 83) as evidenced by
decreased E-cadherin expression and enhanced expression of

mesenchymal markers (68). Whereas our results support the
idea that GalNAc-T6 expression negatively regulates adhesion
of epithelial cells, we did not observe any changes in E-cadherin
expression and hence could not confirm the potential effect of
GalNAc-T6 on EMT previously observed in prostate cancer cell
lines (68).

Because a large proportion of the proteins that pass through
the secretory apparatus are potential substrates for GalNAc-T6
(84, 85), it is challenging to determine the specific molecular
mechanisms underlying the observed oncogenic effects of Gal-
NAc-T6. Using the isogenic LS174T cell model system, we
began to characterize the effects associated with the loss of the
GALNT6 gene both at the global transcriptomic and global
O-glycoproteomic level.

We confirmed that the transcriptomic profile of LS174T can-
cer cells resembled the expression profile of human colon can-
cer found in the CancerBrowser UCSC database. Both data sets
showed low expression of colon cancer differentiation markers,
such as pyruvate dehydrogenase kinase 1 (PDK1), trefoil factor
2 (TFF2), and alanyl aminopeptidase (ANPEP), and high
expression of stem cell markers, such as olfactomedin 4

Figure 6. Differential O-glycoproteomic analysis of GalNAc-T6 and GalNAc-T3 using the SimpleCell strategy. a, digests of cell pairs were labeled with
either light (L) or medium (M) isotopes and mixed 1:1. The glycopeptides were submitted to VVA LWAC for GalNAc-glycopeptide enrichment and then analyzed
further by mass spectrometry. b, production of SimpleCells (LS174TSC). Knockout of COSMC generates cells with short glycans (Tn and sTn). The SimpleCells
strategy was described by Steentoft et al. (26). Additional knockouts of GALNT6 (�T6), GALNT3 (�T3), or both (�T3�T6) in LS174TSC cells are shown. Green,
GalNAc-T/O-glycans; blue, DAPI. Scale bar, 10 �m in all images. c, differential O-glycoproteomes were analyzed for the indicated pairs: LS174TSC (L) versus
LS174TSC�T6 (M); LS174TSC (L) versus LS174TSC�T3 (M); LS174TSC (L) versus LS174TSC�T3�T6 (M); and LS174TSC�T3 (L) versus LS174TSC�T6 (M). Red, potential
GalNAc-T6 O-glycosylation targets; blue, potential GalNAc-T3 targets; purple, potential GalNAc-T3 and/or GalNAc-T6 targets. d, 98 GalNAc-T6 –specific glyco-
sylation sites were identified. Of 25 reproducible targets, 19 targets were also detected as GalNAc-T3 specific, non-specific, or false positives due to up-regu-
lated protein levels, leaving six specific targets for GalNAc-T6. Of 102 GalNAc-T3 targets, no specific targets were detected. e, 82 GalNAc-T3/GalNAc-6 targets
were detected, which included six GalNAc-T6 –specific targets. There were no GalNAc-T3-specific targets, suggesting that GalNAc-T3 and GalNAc-T6 have
overlapping functions, with just a few GalNAc-T6 –specific O-glycosylation targets.

Table 2
GalNAc-T6-specific O-glycosylation sites
Six GalNAc-T6-specific O-glycosylation sites were identified as described in Fig. 6. CCDC14 was excluded from the table due to its presumed cytoplasmic localization,
which could question the nature of the HexNAc residues. When several O-glycans are depicted, the precise position of the GalNAc-T6 specific O-glycosylation could not
be determined.
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(OLFM4), achaete-scute family of bHLH transcription factor 2
(ASCL2), and SPARC-related modular calcium-binding 2
(SMOC2). In contrast, the expression profile of GALNT6
knockout cells had many features that are found in the tran-
scriptomic profile of healthy colon tissue, e.g. higher expression
of differentiation markers and down-regulated expression of
stem cell markers. Thus, the transcriptomic data confirmed
that loss of GalNAc-T6 causes the LS174T cells to resemble
cells found in normal human colon tissue. Furthermore, the
transcriptomic analysis revealed a much larger impact by the
loss of GalNAc-T6 than by the loss of GalNAc-T3. This implies
that inactivation of GALNT3 in LS174T cells has wider conse-
quences than inactivation of GALNT3 supporting the pheno-
typic characterization of cells with and without GalNAc-T3 and
GalNAc-T6. These findings are intriguing, because GalNAc-T3
and GalNAc-T6 have previously been suggested to perform
very similar functions.

Our global differential O-glycoproteomic analysis of cells
with and without GalNAc-T3 and GalNAc-T6 further con-
firmed specific functions related to GalNAc-T6 but not Gal-
NAc-T3 in LS174T cells. We used our previously developed
SimpleCell strategy (26) and performed proteome-wide analy-
sis to identify O-glycoproteins with O-glycan attachment sites
directly comparing the O-glycoproteomes of isogenic cell lines
with and without GalNAc-T6 and/or GalNAc-T3. We identi-
fied 81 shared O-glycosylation targets for GalNAc-T6 and Gal-
NAc-T3. Surprisingly, of these targets, only six were GalNAc-
T6 –specific, whereas none of the targets were specific for
GalNAc-T3. Interestingly, several of the GalNAc-T6 –specific
target proteins play important roles in cell– cell and cell–matrix
adhesion. For example, MIA3 (melanoma inhibitory activity
family, member 3) has an ortholog, TANGO1, that is important
for transportation and polarized secretion of collagen 7 in Dro-
sophila and mice (86 –88). Another interesting GalNAc-T6 tar-
get is the ephrin B6 receptor (EphB6) (89). Ephrin receptors are
a family of transmembrane proteins involved in cell adhesion
and migration (90). Interestingly, the GalNAc-T6 glycosylation
site in EphB6 is located in close proximity to the proposed bind-
ing pocket, which opens for the possibility that glycosylation
interferes with ephrin B ligand binding. A few other GalNAc-
T6 –specific targets were found, including SLITRK1, associated
with Tourette’s syndrome (91) and homologous to the Slit pro-
teins. Slit proteins are important for regulating axonal guid-
ance, cell migration, and axonal branching by altering cellular
adhesiveness and cytoskeletal organization (92, 93). The effect
of SLITRK1 on synaptic adhesion is mediated through two
extracellular leucine-rich repeats (LRR1 and LRR2) that inter-
act with presynaptic leukocyte common antigen-related recep-
tor protein-tyrosine phosphatases (LAR-RPTPs) (94). Interest-
ingly, the GalNAc-T6 –specific site in SLITRK1 is localized in
close proximity to the binding interface with LAR-RPTPs. It is,
however, an open question whether the GalNAc-T6-mediated
glycosylation influences SLITRK1 functions, such as lateral
assembly of LAR-RPTPs–Slitrks complexes (94), and whether
the interaction between SLITRK1 and LAR-RPTPs is impor-
tant for adhesion between colonic cells. Notably, the molecular
mechanisms by which these individual site-specific glycosyla-
tion events affect the function of proteins are not easy to eluci-

date and will require an in-depth analysis of each individual
protein in future studies. We and others have demonstrated
that site-specific O-glycosylation of proteins affects protein
function in several ways, including proprotein processing,
modulation of the ligand-binding properties of receptors, and
regulation of ectodomain shedding and cell signaling (30 –33).
One prominent example of the function of single O-glycan sites
in receptor dimerization comes from the demonstration that
site-specific O-glycosylation of the granulocyte-CSF receptor
regulates receptor homodimerization and signaling. Moreover,
a common somatic mutation in a single O-glycosite is a cancer
driver in a large percentage of patients with chronic neutro-
philic leukemia (95). It is thus very likely that GalNAc-T6 can
influence the function of its protein targets in several ways, but
further studies are needed to identify the molecular mecha-
nisms underlying GalNAc-T6-mediated regulation of protein
function.

A potential role for GalNAc-T6 in modulation of the inter-
action with the immune system was suggested by the sit-spe-
cific glycosylation of HLA class II. The GalNAc-T6 –specific
site was localized in the HLA class II histocompatibility antigen
� chain, also known as CD74 or invariant chain, which is
involved in the stabilization and transport of MHC class II pro-
teins (96, 97). Disrupting the interaction between CD74 and
MHC class II molecules, which could be the result of GalNAc-
T6 –specific O-glycosylation, might decrease the presence of
MHC class II molecules on the cell surface, leading to immune
evasion of cancer cells. Although validation in future studies is
required, it would be intriguing if a site-specific cancer-associ-
ated glycosylation event directly interfered with the expression
of MHCII on the cancer surface. The cancer-specific expres-
sion of GalNAc-T6 might also interact with the immune system
indirectly through induction of cancer-associated autoantibod-
ies targeting novel cancer-specific glycopeptide epitopes (98 –
102). Such site-specific glycosylation events may also represent
potential targets for monoclonal antibody therapy (98, 103),
and our findings may provide support for the development of
immunotherapeutic strategies that target aberrant O-glycopro-
teins or glycopeptide epitopes created by GalNAc-T6. Further-
more, the cancer-specific expression of GalNAc-T6 in colon
cancer also suggests that isoform-specific inhibitors could
prove useful in the future treatment of human cancers.

In conclusion, we here present evidence that overexpression
of GalNAc-T6, as observed in several types of epithelial cancer,
intrinsically promotes an oncogenic phenotype in the LS174T
colon cancer cell model. This phenotype is characterized by
increased proliferation and dysplasia, compromised adhesion,
and the loss of normal differentiation, all of which are char-
acteristics of colon cancer (104). Our study demonstrates
that GalNAc-T6 is a potential key regulator of the malignant
phenotype in colon cancer and suggests that overexpression
of GalNAc-T6 is an early event during cancer development
that provides a permissive environment for malignant evo-
lution. In this context it will be of interest to test the effect of
overexpression of GalNAc-T6 in healthy colon cancer cells
in future studies.
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Experimental procedures

Tissues

Tissue microarrays were purchased from U.S. Biomax, Inc.
The tissue microarray (FCO401b) frozen tissue samples were
from colo-rectal adenocarcinoma patients. Healthy control
samples were evaluated from frozen multiple organ normal tis-
sue array. The sections were fixed in cold 10% buffered neutral
formalin for 15 min or in cold acetone for 10 min. Immunohis-
tochemistry was performed as described under “Immunofluo-
rescence” below.

Cell culture

The human colon adenocarcinoma LS174T cell line was cho-
sen as a model system based on its phenotypic characteristics
and stable genome (70, 81). Cells were grown in 50% DMEM
1965 and 50% Ham’s F12 supplemented with 10% FBS and 1%
L-glutamine. Prior to staining, cells were trypsinized and seeded
on diagnostic slides, dried overnight, and fixed in ice-cold ace-
tone for 5–10 min. Alternatively, cells were cultured directly on
coverslips in 24-well plates (5 � 104 cells/well) for 4 days and
fixed directly in the wells with 4% paraformaldehyde and 1%
Triton X-100 for at least 2 h at room temperature.

Immunofluorescence

Slides or coverslips with cultured cells were incubated for
24 h at 4 °C with undiluted hybridoma supernatant (anti-Gal-
NAc-T6, mouse mAb 2F3; anti-GalNAc-T3, mouse mAb 2D10;
anti-GalNAc-T1 (Mab UH3 4D8), -T2 (Mab UH4 4C4), -T4
(UH6 4G4), -T5 (Mab 5F11), -T11 (Mab UH8 1B2), -T12 (Mab
1F9), -T14 (Mab 3D2, -T16 (Mab 4C6) (112) anti-Tn, mouse
mAb 5F4; anti-STn, mouse mAb 3F1; and anti-T, mouse mAb
3C9) or with anti-LGR5 rabbit mAb (1:100, Novus Biologicals).
Bound mAbs were detected with FITC-conjugated rabbit anti-
mouse immunoglobulin (1:100; Dako, Denmark), anti-mouse
Alexa 488 (1:500; Invitrogen), or swine anti-rabbit FITC (1:100;
DAKO). Actin was detected with Alexa 594-conjugated phal-
loidin (1:500; Invitrogen). Slides were mounted with Prolong
Gold antifade reagent with DAPI (Invitrogen). Fluorescence
micrographs were obtained on a Leica wide-field fluorescence
microscope or a Zeiss LSM710 confocal microscope. Image pro-
cessing was performed in ImageJ.

ZFN knockout gene targeting

LS174T �T3 and/or �T6 in a WT and SimpleCell (COSMC
knockout) background were generated as described previously
(26). Briefly, ZFN constructs targeting COSMC, GALNT6, and
GALNT3 were custom produced (Sigma), and LS174T cells
were transfected with 2 �g of GFP- or DsRed2-tagged ZFN
plasmids (105) using nucleofection with Amaxa Nucleofector
(Lonza). GFP�/DsRed2� cells were enriched by fluorescence-
activated cell sorting (FACS) and single-cell cloned by limited
dilution. Indels at the respective target sites were characterized
by Indel Detection by Amplicon Analysis (IDAA) (106), and
indels identified in individual cell clones that were selected
were confirmed by Sanger sequencing.

Precise GALNT6-targeted integration

Precise targeted integration of GALNT6 into GALNT6�/�

cells for stable expression of GALNT6 was performed using the
ObLiGaRe knockin strategy (107) targeting the AAVS1 locus
(also known as the PPP1R12C locus) on human chromosome
19. Briefly, an ObLiGaRe donor scaffolding vector was con-
structed encompassing the left and right inverted AAVS1 ZFN-
binding sites flanking a CMV-GALNT6-Bgh-UTR expression
cassette surrounded by insulator sequences. LS174T�T6 cells
were transfected with 5 �g of ObLiGaRe-GALNT6 vector plas-
mid and 2.5 �g of each AAVS1 ZFN pair (Sigma) using nucleo-
fection (Amaxa Nucleofector; Lonza). Nucleofected cells were
single-cell cloned by limiting dilution, and GALNT6 knockin
clones were screened for GalNAc-T6 expression by immuno-
histochemistry using our well-characterized anti-GalNAc-T6
monoclonal antibody (2F3) (108). Precise targeted integration
was verified by junction PCR across the target integration sites.

RNA transcriptomic analysis

Total RNA was extracted from exponentially growing cells
using the RNeasy� kit (Qiagen). RNA integrity and quality were
assessed using Bioanalyzer instrumentation (Agilent Technol-
ogies). The analysis was performed on total RNA from one
clone of each of the following types of cells: LS174T WT, �T6,
�T6�T6,�T3, and �T3�T6. Transcriptome analysis of the
extracted total RNA samples was performed by the Beijing
Genomics Institute (BGI) as described previously (29). Briefly, a
library was constructed using the Illumina Truseq RNA Sample
Preparation Kit and subjected to PCR amplification and quality
control before undergoing next generation sequencing with the
Illumina HiSeq 2000 System (Illumina, San Diego).

Bioinformatics analysis

Bioinformatics analysis was performed as described previ-
ously (29). Briefly, aligned reads from the RNAseq analysis were
analyzed using the DESeq (109) and EdgeR (110) packages for R
and Bioconductor to identify differentially expressed tran-
scripts. DESeq and EdgeR analyses were run using default
parameters following previously described protocols (111).

Proliferation assay

A total of 5 � 104 cells/well were plated in duplicate in
24-well dishes on day 0 for each time point. Cells were
trypsinized and counted on days 4, 6, and 8.

LWAC isolation of Tn-O-glycopeptides

Vicia villosa agglutinin (VVA) LWAC isolation of Tn-O-gly-
copeptides was performed as described previously (29). Briefly,
peptides obtained from trypsin digestion of TCL or culture
supernatant (SEC) from LS174TSC cells were neuraminidase-
treated to remove sialic acid residues, followed by labeling with
light or medium isotopomeric dimethyl labels (74). The labeled
digestion reactions were mixed in 1:1 ratios as follows:
LS174TSC (light)/LS174TSC�T6 (medium); LS174TSC (light)/
LS174TSC�T3 (medium); LS174TSC (light)/LS174TSC�T3�T6
(medium); and LS174TSC�T3 (light)/LS174TSC�T6 (medium).
GalNAc-binding VVA lectin was used for LWAC to separate
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the digests into glycopeptide (eluate) and peptide fractions
(flow-through) (26). Isoelectric focusing was performed on the
peptides using a 3100 OFFGEL fractionator (Agilent) using pH
3–10 strips (GE Healthcare) (75). All peptide and glycopeptide
samples were desalted by self-made Stage Tips (C18 sorbent
from 3 M Empore) and subjected to LC-MS and HCD/ETD-
MS/MS analysis.

Mass spectrometry and data analysis

EASY-nLC 1000 UHPLC (Thermo Fisher Scientific) inter-
faced via nanoSpray Flex ion source to an LTQ-Orbitrap Velos
Pro mass spectrometer (Thermo Fisher Scientific) was used for
analysis. The nLC was operated in a single analytical column set
up using PicoFrit Emitters (New Objectives, 75 �m inner diam-
eter) packed in-house with Reprosil-Pure-AQ C18 phase (Dr.
Maisch, 1.9-�m particle size, 19 –21 cm column length). Each
sample dissolved in 0.1% formic acid was injected onto the col-
umn and eluted in a gradient from 2 to 20% B in 95 min, from
20% to 80% B in 10 min, and 80% B for 15 min at 200 nl/min
(solvent A, 100% H2O; solvent B, 100% acetonitrile; both con-
taining 0.1% (v/v) formic acid).

A precursor MS1 scan (m/z 350 –1,700) of intact peptides
was acquired in the Orbitrap at a nominal resolution setting of
60,000, followed by Orbitrap HCD-MS2 and ETD-MS2 (m/z of
120 –2,000) of the five most abundant multiply charged precur-
sors in the MS1 spectrum; a minimum MS1 signal threshold of
50,000 was used for triggering data-dependent fragmentation
events; MS2 spectra were acquired at a resolution of 15,000 for
HCD MS2 and 30,000 for ETD MS2. Isolation width was 3 mass
units, and usually one microscan was collected for each spec-
trum. Automatic gain control targets were 500,000 ions for
Orbitrap MS1 and 100,000 for MS2 scans. Supplemental acti-
vation (25%) of the charge-reduced species was used in the ETD
analysis to improve fragmentation. Dynamic exclusion for 60 s
was used to prevent repeated analysis of the same components.
Polysiloxane ions at m/z 445.12003 were used as a lock mass in
all runs.

Data processing was performed using Proteome Discoverer
1.4 software (Thermo Fisher Scientific) using Sequest HT node
as a search engine. In all cases the precursor mass tolerance was
set to 10 ppm and fragment ion mass tolerance to 20 milli-mass
units. All spectra were initially searched at the full cleavage
specificity, filtered according to the confidence level (medium,
low, and unassigned), and further searched with the semi-spe-
cific enzymatic cleavage. Up to two missed cleavages were
allowed. Carbamidomethylation on cysteine residues was used
as a fixed modification. Methionine oxidation and HexNAc and
HexHexNAc attachment to serine, threonine, and tyrosine
were used as variable modifications for ETD-MS2. All HCD-
MS2s were pre-processed as described (75) and searched under
the same conditions mentioned above using only methionine
oxidation as variable modification. All spectra were searched
against a concatenated forward/reverse human-specific data-
base (UniProt, January 2013, containing 20,232 canonical
entries. In addition, another 251 common contaminants and
3187 entries of viruses known to infect humans were included
in the search) using a target false discovery rate of 1%.

Cell– cell adhesion assay

Cells that were grown to 100% confluence in 24-well plates
were washed in HBSS and treated with 2.4 mg/ml dispase in
HBSS for 20 min, leaving intact cell layers that were disassoci-
ated from the plastic wells. PBS (1 ml) was added carefully, and
after the cell solution was pipetted up and down three times,
fractions with more than 20 cells were counted.

Author contributions—K. L., S. D., and H. H. W. designed and per-
formed experiments, analyzed data, and wrote the paper. E. P. B. and
M. F. provided essential reagents and revised the paper. L. H.,
A. M. R. L., A. D., A. D. H., U. M., and S. Y. V. designed and/or per-
formed experiments.
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